2005年12月 5.6.7日

CTC05-I-024 歩道のつるつる路面に関する室内実験

細	谷	尚	弘	(钳)北海道開発技術センター)
金	Ħ	安	弘	(")
新	谷	陽	子	(")
永	田	泰	浩	(")
石	Д	信	敬	(北海道大学 低温科学研究所)
14	村	浩		())防災科学技術研究所)

Laboratory experiment on extremely slippery sidewalks covered with ice and snow in winter

N. Hosotani	(Hokkaido Center)	Development	Engineering
Y. Kaneda	(Hokkaido Center)	Development	Engineering
Y. Shintani	(Hokkaido Center)	Development	Engineering
Y. Nagata	(Hokkaido Center)	Development	Engineering
N. Ishikawa	(University Earth Scien	of Hokkaido E ce/Low Tempera	nvironmental ature)
K. Nishimura	(National R Science and	esearch Institu Disaster Prever	te for Earth ntion)

1. はじめに

近年、都市部を中心として冬期の歩行者転 倒事故が増加している(図 1)。事故の増加原因 には、転倒してケガをし易い高齢者の増加や、 冬期にも軽装備で活動する人が増えたというよう なライフスタイルの変化が挙げられる。図 1を見る と、札幌ではスパイクタイヤの装着率の低下と共 に、転倒事故による救急搬送者数が急増してい る。スパイクタイヤ禁止が歩道の雪氷路面に影 響を与えているかどうかはわからないが、滑りやす いつるつる化した雪氷路面の出現が歩道でも多 くなった結果として、転倒事故が増えた可能性も 否定はできない。

つるつる路面と言われる滑りやすい路面は、水 が凍結した路面であるが、路面分類¹⁾²⁾では氷 板や氷膜に相当する。氷板は、融け水がしみ込 んだ圧雪などが寒気で凍ったものである。氷膜は、 約1mm以下の薄い氷の膜で、2通りの出来方が ある。一つは、舗装面に広がった水膜が凍ったも ので、2つ目は、乾いた圧雪の表面に生じた薄い 氷膜である。²⁾

これまで、路面の研究は車道を中心に行われ てきたが、車道であれ歩道であれ、形成される路 面形態としては同じと考えられる。ただ、車道と歩

道の雪氷路面では、2つの大きな環境の違いがある。一 つは、降り積もった雪を機械的に圧密することになるの が、車両と歩行者と言う違いである。1 台の重量が数千 kg の車両が強力な駆動力でタイヤを回転させながら圧 密するのと、体重数+ kg の人間が歩きながら圧密する のでは、雪を押し固めたり、破壊、撹拌する機械的効果 に大きな違いがある。また、車道では走行中のタイヤの 発熱や雪面との摩擦熱などによって雪氷路面を融解さ せるが、歩道ではこのような外部からの多量の熱の供給 はない。

2番目は、車道と歩道との除雪の仕方の違いである。 主要な車道では除雪レベルの向上により、路上の雪は 降るたびに除雪で除去される場合が多い。一方、歩道 では、車道ほど頻繁な除雪はされないため、降り積もっ

-710 -

た雪は変態しつつ比較的長期間、歩道上に残る。

こうした車道と歩道の環境の違いは、少なからず雪氷 路面の形成過程に影響を与えているであろう。本調査 の目的は、気象条件のコントロールが可能な低温室に おいて歩道の凍結路面を再現し、歩道がつるつる化す る過程を明らかにすることである。

歩道に形成された氷板と、圧雪の表面が氷膜化した、 共に滑りやすいつるつる路面の写真を図2、図3に示す。 本論文では、後者の圧雪表面の氷膜化に関する実験に ついて報告する。

図2 氷板が形成された歩道、氷板は周囲の雪に比べ ると、光の散乱が押さえられ灰色っぽく見える。

- 図3 圧雪表面が氷膜化した歩道、薄い氷膜を通して内 部の圧雪が透けて見えるため、白っぽく見える、
- 2. 実験方法

2 1 実験条件および実験手順

表1の設定条件に基づき、実験は以下の流れ で実施した(図4)。

- ①人工降雪装置により、5m×3mの実験エリアに 深さ 40~50cm の新雪を降らせる。実験エリア は図5のように分割した。
- ②1時間踏み固めることにより、圧密する。

- ③最初、区画Aについて日射照射装置により20 分間照射する。照射終了前5分間は、雪面を 踏み固める。他の区画はアルミ箔を張った断 熱シートで覆うことで日射を遮断した。
- ④区間Aを2分割し半分は放置して、残り半分 の区画で1分踏み固め、1分休止を30分間 継続する。
- ⑤室内温度を変化させ、区間 B~E について③ ~④を繰り返す(図6)。

表1 実験の設定条件

実験 NO	区間	室内設 定温度 (℃)	日射量 (W/m ²)	歩数 (歩/分)	実験開始からの経過時間			
					0~15分	15~20分	20~50分	
実験1	A	-10	300	180~ 190	日射あり	日射あり 踏み固め(1)	日射なし 踏み固め(2)	
実験2	в	-8	同上	同上	同上	同上	同上	
実験3	С	-6	同上	同上	同上	同上	同上	
実験4	D	-4	同上	同上	同上	同上	同上	
実験5	Е	-2	同上	同上	同上	同上	同上	

注1)踏み固め(1):5分間連続して踏み固め 注2)踏み固め(2):1分踏み固め、1分休止を30分間継続(総踏み固め時間:15分)

図4 実験の手順

2.2. 測定項目

表2に測定項目を、図8に実験風景を示す。 静止摩擦係数の測定には、アメリカでASTM (米国材料試験協会)の標準値として規定され、 床の摩擦係数測定等に用いられている簡易型 の測定器を用いた(図7)。

静止摩擦係数および雪面硬度は数箇所で測 定し、その平均値を測定値とした。

表 2 測定項目

計測項目	計測方法/計測機器
全層平均密度	円筒サンプラーにより資料を切りだし重量を計測
雪面硬度	プッシュプルゲージ
静止摩擦係数	ASM725(アメリカン・スリップ・メーター社製)
雪面表面温度	接触型表面温度計
雪中温度	サーミスター温度計

図 7 静止摩擦係数測定器

図 8 実験風景

3. 実験結果

3.1. 実験結果の概要

5段階に室内温度を変化させた各実験時の全 層平均密度、静止摩擦係数、硬度、雪面温度、 雪中温度(サーミスター温度計のプローブを雪の 中に突き刺すことで、積雪の中間付近の深さの 雪温を測定)の一覧を表3にまとめて示す。

人工降雪機で形成された新雪の密度は 0.03 ~0.05g/m³と非常に小さいが、1 時間踏み固め ることにより(約1万 1 千歩)、密度 0.31~0.33 g/m³の圧雪が形成された。

実験(日射の照射と踏み固め)開始前後の各 計測値を比較すると、設定室内温度-10℃、 -8℃では、明瞭な計測値の違いは表れておらず、 雪面状況にも大きな変化は見られなかった。実 験 1(設定室内温度-10℃)で、実験終了後に 静止摩擦係数が低下しているが、これは雪面の 凹凸が踏み固めにより平滑化した結果と考えら れる。

設定室内温度-6、-4、-2℃の3つの各実験の 詳細について以下に述べる。

なお、日射装置からの発熱により、日射照射 中は設定室内温度-10、-8、-6℃では最大-6℃ 程度まで、設定温度-4、-2℃では最大 0℃程度 まで室温が上昇した。したがって、各実験とも実 験中は約4℃程度の気温変化がある。

実験 NO	設定 室 温 (℃)	E 列 E)))	全層平均密度 g/m ³		静止摩擦係数		硬度 kPa		雪面温度	雪中温度		
			踏み固 め有り	踏み固 め無し	踏み固 め有り	踏み固 め無し	踏み固 め有り	踏み固 め無し	(°C)	(°C)		
実験1	-10	実験 開始前	0.	31	0.49		0.80~1.14		0	7 6		
		実験 終了後	0.29	-	0.36	0.41	1.21	-	-9.0-0	-//0		
実験2	-8	実験 開始前		0.33		0.49		0.80~1.14		0 6	0 6	
		実験 終了後	0.32	. —	0.45	0.44	1.10	-	-00	0.4-0		
実験3	-6	実験 開始前	0.31		0.49		0.80~1.14		-9~-7			
		実験 終了後	0.34	-	0.30	0.36	0.90	-	5 /	0 - 0		
実験4	-4	実験 開始前	-	-	0.46		0.80~1.14		-1~-1	-1~-2		
		4		4	4	実験 終了後	0.35	-	0.15	0.20	0.79	-
実験5	-2	実験 開始前	0.34		0.34		0.80~1.14		-1	-1-1-2		
		実験 終了後	0.42	-	0.11	0.25	0.79	-	4 - 1	-4~-3		

表 3 実験結果一覧

3.2. 設定室内温度-6°C(実験3)の実験結果

実験前の静止摩擦係数は0.49であったが、20分間の 日射照射と5分間の踏み固めにより0.32~0.35まで低 下した。その後の踏み固め(1分毎)により、静止摩擦係 数は変動しつつ徐々にではあるが低下し、実験終了後 の値は0.30であった。

雪面温度は実験中-8~-6℃であったことから、 日射による雪面の融解はない。雪面状態は圧 雪のままであり、摩擦係数の低下は踏み固めに より、凹凸が平滑化されたことによるものと考えら れる。

図9 踏み固めによる静止摩擦係数の推移(実験3)

3.3. 設定室内温度-4℃(実験 4)の実験結果

実験前の静止摩擦係数は 0.46 で、20 分間の日射照 射と5分間の踏み固めにより 0.22~0.26 まで低下した。

実験中の雪中温度は・3~・4℃であったが、日射照射 中の雪面温度は・0.5℃で室温も0℃近くまで上昇し、雪 面には日射による融解が見られた。日射照射終了直後、 室温は・3℃に低下し、その後は設定温度である・4℃程 度で経過した。雪面温度も室温に追従して、照射後は ・4℃程度に低下した。

日射終了後も踏み固めを継続した雪面の摩擦係数は、 時間と共に低下し、歩数約 2,000 歩(日射終了後約 10 分)時点で 0.16 程度になった。その後は、摩擦係数 0.13~0.17 で推移し、踏み固めによる大きな値の変化 は見られなかった。

実験終了後の踏み固めを行った雪面状況の 写真を図 11 に示す。雪面には滑りやすい氷膜 が形成されている。

日射照射後に踏み固めを行わなかった雪面の摩擦 係数は 0.2 前後で、踏み固めを行った雪面ほどではな いが、比較的滑りやすい状態であった。

図10 踏み固めによる静止摩擦係数の推移(実験4)

図 11 設定室内温度-4℃で、日射照射後踏み 固めた後の雪面状況(実験 4).

3.4. 設定室内温度-2°C(実験 2)の実験結果

実験前の静止摩擦係数は 0.34 で、20 分間の日射照 射と 5 分間の踏み固め後の値は、0.41~0.44 であっ た。

日射照射中は雪面に融解が見られ、設定室内温度 -4℃の実験3よりも融解が進んだため、踏み固め中の雪 面は幾分ざくざくした状態であった。日射照射後の摩擦 係数の増加は、雪面が融解して柔らかくなっている際に 踏み固めたことにより、靴による足跡など、踏み固めが逆 に細かな凹凸を生じさせた影響とも考えられる。

実験3と同様に、日射照射中の室温は0℃近くまで上 昇したが、照射終了後の室温は-2℃で安定した。実験 中の雪中温度は-2~-4℃であった。

日射照射後に踏み固めを行わない雪面の静止摩擦 係数は、0.25 程度で大きなで変化はなかった。日射終 了後も踏み固めを継続した雪面の摩擦係数は、時間と

共に急激に低下し、歩数約 2,300 歩(日射終了後約 15 分)時点で 0.11~0.13 程度になった。

実験終了後の踏み固めを行った雪面状況の 写真を図 13 に示す。雪面には氷膜が形成され、 非常に滑りやすい、いわゆるつるつる路面状態 であった。

図 12 踏み固めによる静止摩擦係数の推移(実験 5)

図 13 設定室内温度-2℃で、日射照射後踏み 固めた後の雪面状況(実験 5)

4. 考察

全実験での静止摩擦係数の推移を図 14 に、 踏み固めをした場合としない場合との実験後の 静止摩擦係数を図 15 にまとめて示す。

今回、室温を-10℃から-2℃まで 5 段階に変 化させたが、300w/m²程度の日射量を与えて雪 面が融解するのは、室温-4℃以上の場合であっ た(ただし、前述したように日射装置からの発熱 により照射中は室温が上昇するため、実際の室 温は設定温度よりも高い)。

雪面が融解しない場合は、踏み固めは大きな 凹凸を平滑化させる効果はあるものの、雪面の 変態には寄与しないため、摩擦係数に大きな変 化を与えることはない。

雪面が融解すると柔らかくなるため、適度な踏 み固めは凹凸をなくし平滑化させる役目を果た す。日射が照射されて融解しつつある圧雪表面 では(実験4、5)、融解した雪粒が多数の水滴と なっている状況が観察された。踏み固めは、こう した水滴を圧雪表面の空隙部分に浸透させる 効果を持つ。圧雪表面に水を含んだごく薄い層 が形成され、その層が外気と下の積雪層(雪温 が氷点下)により冷却されて氷膜となる。

図 14 静止摩擦係数の推移(上段:日射照射後踏み固

めなし、下段:日射照射後踏み固めあり)

図 15 日射照射後踏み固めた場合と踏み固め ない場合の静止摩擦係数の比較

- 714 -

図 16 は、日射照射および踏み固め後の圧雪 の鉛 直薄片写真である。踏み固めの機械的な 充填により圧密されているが、積雪内部は空隙 が不均一に散在している。積雪内部は雪粒の変 態が進行していない圧雪(しまり雪)状態である が、積雪表面には厚さ2mm程度の薄い再結晶 で氷化した層が形成されている(黒い矢印)。こ の氷の表層が、静止摩擦係数 0.11という滑りや すい氷膜となっている。

図 16 日射照射および踏み固め後の圧雪の鉛 直薄片写真(サンプルNo.18、設定室内温 度-4°C). 密度 0.35g/m³、摩擦係数 0.11.

図 17は、設定室内温度・2℃の実験5における、 日射照射および踏み固め後の圧雪の鉛直薄片 写真である。

積雪表面には再結晶化した層が形成されているが、完全に氷化はしておらず、空隙も多く見られる。この再結晶層の厚さは2~3cmと、図17に比較すると厚い。これは、設定室内温度が図17の実験4より高いため、雪面付近の融雪がより進んだためとも考えられる。

5. おわりに

車道と比べて、これまであまり対象にされる機 会の少なかった歩道の路面雪氷について、室内 実験を行った。今回の実験では、歩道のつるつ

図 17 日射照射および踏み固め後の圧雪の鉛 直薄片写真(サンプルNo.20、設定室内温度

-2℃). 密度 0.34g/m³、摩擦係数 0.12. る路面の内、表面が氷膜化した圧雪を再現する ことができた。

気温がマイナスで日射のある状況を想定した 実験を行ったが、気温が約-4℃以上であれば、 日射により圧雪表面が融解し、日射がなくなった 後の再凍結により表面に氷膜が形成される。

融雪から再凍結に至る過程で、踏み固めがな い場合は氷膜は形成されず、つるつる路面と呼 ばれる非常に滑りやすい状態には至らない。踏 み固めは、1)機械的に雪面の凹凸を平滑化さ せる他、2)融け水を空隙部分に浸透させ、圧雪 表面に氷膜の元となる水を含んだごく薄い層を 形成させる働きをする。このように、歩道のつるつ る路面の形成には、気象条件の他、踏み固めも 大きな役割を持っていると言える。

本研究を進めるに当たっては、独立行政法人 防災科学研究所新庄支所の小杉健二氏、望 月重人氏を始め、多くの支所の関係者にお世 話になった。ここに記して感謝の意を表します。

参考文献

- 木下誠一・秋田谷英次・田沼邦雄 1970 道路上の 雪氷の調査Ⅱ. 低温科学,物理編,28,311-323.
- 前野紀一他 1987 道路雪氷の構造と新分類.低温 科学,物理編,46,119-133.